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Microarray assessment of N-glycan-
specific IgE and IgG profiles 
associated with Schistosoma 
mansoni infection in rural and urban 
Uganda
Gyaviira Nkurunungi   1,2, Angela van Diepen3, Jacent Nassuuna1, Richard E. Sanya1,4, 
Margaret Nampijja1, Irene Nambuya1, Joyce Kabagenyi1, Sonia Serna5, Niels-
Christian Reichardt5,6, Ronald van Ree7, Emily L. Webb8, Alison M. Elliott   1,2, 
Maria Yazdanbakhsh   3 & Cornelis H. Hokke   3

Core β-1,2-xylose and α-1,3-fucose are antigenic motifs on schistosome N-glycans, as well as 
prominent IgE targets on some plant and insect glycoproteins. To map the association of schistosome 
infection with responses to these motifs, we assessed plasma IgE and IgG reactivity using microarray 
technology among Ugandans from rural Schistosoma mansoni (Sm)-endemic islands (n = 209), and from 
proximate urban communities with lower Sm exposure (n = 62). IgE and IgG responses to core β-1,2-
xylose and α-1,3-fucose modified N-glycans were higher in rural versus urban participants. Among 
rural participants, IgE and IgG to core β-1,2-xylose were positively associated with Sm infection and 
concentration peaks coincided with the infection intensity peak in early adolescence. Responses to core 
α-1,3-fucose were elevated regardless of Sm infection status and peaked before the infection peak. 
Among urban participants, Sm infection intensity was predominantly light and positively associated 
with responses to both motifs. Principal component and hierarchical cluster analysis reduced the 
data to a set of variables that captured core β-1,2-xylose- and α-1,3-fucose-specific responses, and 
confirmed associations with Sm and the rural environment. Responses to core β-1,2-xylose and α-1,3-
fucose have distinctive relationships with Sm infection and intensity that should further be explored for 
associations with protective immunity, and cross-reactivity with other exposures.

Schistosomiasis is second only to malaria as a parasitic cause of human morbidity, with over 230 million infec-
tions globally, the majority of which occur in tropical and subtropical sub-Saharan Africa1–3. Despite important 
strides in coverage of anthelminthic treatment, reductions in infection prevalence have only been modest4–6, 
and the long struggle for a vaccine breakthrough continues7. The host immunological response to Schistosoma 
infection is shaped to a significant extent by schistosome surface-exposed and secreted glycans and glycoproteins. 
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For example, anti-glycan antibody responses dominate the host humoral response to schistosome larvae and 
eggs8–10 and Schistosoma soluble egg antigen (SEA)-mediated Th2-polarisation profoundly relies on glycosyla-
tion11,12. In a mouse model for periovular granuloma formation, periodate treatment of SEA-coated beads inhib-
ited their granulomogenic activity13, further demonstrating the functional relevance of glycan-specific responses 
in Schistosoma-mediated immunity and pathology. A better understanding of the human immune response to the 
Schistosoma glycome may be beneficial to the current drive towards identification of better Schistosoma diagnos-
tic markers and potent vaccine candidates14–18.

Current insights into the Schistosoma glycome, the most characterised among parasites, have been particu-
larly aided by mass spectrometry-based (MS) studies19–21. Analysis of asparagine (N)-linked glycans expressed 
by schistosomes reveals two standout, non-mammalian substitutions22,23 on the trimannosyl-chitobiose 
core (Man3GlcNAc2, conserved in all eukaryotes): an α-1,3-fucose (α3Fuc) linked to the asparagine-linked 
N-acetylglucosamine (GlcNAc) of the chitobiose component and a β-1,2-xylose (β2Xyl) linked to the β-mannose 
of the trimannosyl component24 (Fig. 1). These substitutions are also found on nematode glycans from 
Haemonchus contortus and Caenorhabditis elegans25–28, and on invertebrate29,30 and plant glycans31–33, but have 
so far not been detected on glycans from other helminths prevalent in the tropics19. Detailed MS studies have 
neither detected core β2Xyl nor core α3Fuc modified N-glycans in adult schistosome worms but both are present 
in miracidia and eggs, while cercariae express core β2Xyl but no α3Fuc on the core GlcNAc19. Other common 
alterations to the schistosome Man3GlcNAc2 core include addition of antennae composed of GalNAcβ1-4GlcNAc 
(LacdiNAc, LDN), GalNAcβ1-4(Fucα1-3)GlcNAc (fucosylated LacdiNAc, LDN-F) and Galβ1-4(Fucα1-3)
GlcNAc (Lewis X, LeX) units. These antennary modifications are expressed in schistosomes (at all developmental 
stages, albeit with varying surface expression patterns)34 but are rare in mammals35, and occur variably in other 
helminth species19.

Core β2Xyl and α3Fuc modified schistosome egg N-glycoproteins induce potent Th2-type cellular responses36. 
In plants, core β2Xyl and α3Fuc may be the most common N-glycan epitopes targeted by human IgE37,38. It is 
plausible that N-glycan core substitutions play a major role in the glycan-dependent host response to chronic 
schistosomiasis. For example, most N-glycans on the SEA-derived glycoprotein omega-1 carry core α3Fuc motifs 
in combination with terminal LeX units39. Omega-1 drives both immunoregulatory40 and Th2 responses41, the lat-
ter in a glycan-dependent manner12. Kappa-5, another major component of the Th2-polarising SEA42, expresses 
glycans modified with both core β2Xyl and core α3Fuc43. Whether protective immunity against Schistosoma 
infection and reinfection (long associated with host IgE responses44,45) can be credited to these epitopes will 
require further investigations in animal and human studies.

The advent of glycan microarray technology enabled serum/plasma profiling of antibodies raised to a wide 
repertoire of N-glycan variants during schistosome infections. This technology has been employed in a small 
number of human studies. Recently, in Ghana, sera from a few S. haematobium infected schoolchildren showed 
elevated IgE responses to core β2Xyl modified N-glycans on a synthetic glycan microarray46, and in sera from a 
small cohort of Schistosoma mansoni (Sm)-infected children and adults near Lake Albert, Uganda, IgG1-4 sub-
class responses to core β2Xyl and α3Fuc motifs were examined using the same array47. Two other human studies 
employing shotgun microarrays constructed of complex native schistosome N-glycans showed strong anti-glycan 
IgG and IgM responses against a wider range of N-glycans during schistosome infections48,49. A better under-
standing of population-level immune responses to Schistosoma glycans is important for research and clinical 
applications, and requires larger, well-defined immuno-epidemiological studies in endemic settings.

Figure 1.  Non-mammalian carbohydrate substitutions on the N-glycan core. Non-mammalian 
monosaccharide substitutions are denoted by blue brackets. ±implies that motifs in brackets are present or 
absent in different species. Figure drawn using GlycoWorkbench software, version 2.1 (European Carbohydrates 
Database Project).

https://doi.org/10.1038/s41598-019-40009-7


3Scientific Reports |          (2019) 9:3522  | https://doi.org/10.1038/s41598-019-40009-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Fishing villages in the Lake Victoria islands of Koome, Uganda, have a high prevalence of Sm50–53, and have 
been surveyed as part of a portfolio of studies on helminth infections and allergy-related outcomes in Uganda. 
This setting provided a unique opportunity, within the context of a well-characterised large study50, to correlate 
epidemiological trends pertaining to Sm infection (and intensity) with microarray-detected plasma IgE and IgG 
responses to N-glycans with and without core α-1,3-fucosylation and/or β-1,2-xylosylation. Plasma from resi-
dents of nearby mainland urban communities with lower Sm exposure enabled us to make rural-urban compar-
isons of anti-glycan antibody responses.

Methods
Study design and population.  Individuals included in the current investigation were randomly selected 
using a Stata program (StataCorp, College Station, USA) from participants of two cross-sectional surveys in rural 
and urban Uganda, who had a sufficient volume of stored plasma. The rural survey was the outcome survey (year 
three, September 2015–August 2016) of the Lake Victoria Island Intervention Study on Worms and Allergy-
related diseases (LaVIISWA; ISRCTN47196031)50, a cluster-randomised trial of community-based standard ver-
sus intensive anthelminthic intervention in 26 Sm-endemic fishing villages of Koome islands (Lake Victoria, 
Uganda). The trial description50,53 and survey results after three years of intervention52 have been published: 
briefly, standard intervention included annual, community-based, mass drug administration of praziquantel; 
intensive intervention included quarterly praziquantel. The urban survey (September 2016–September 2017) 
was conducted in the 24 sub-wards of Entebbe municipality, an area with lower helminth exposure, located on 
the northern shores of Lake Victoria (approximately 35 km from Koome). It was designed to collect data from an 
urban setting for comparison with the Sm-endemic rural survey.

In both surveys, intestinal helminth infections were assessed using the Kato-Katz (KK) method54 on a sin-
gle stool sample (prepared on two slides, read by different technicians). The remaining sample was stored at 
−80 °C and later investigated for Sm, Necator americanus and Strongyloides stercoralis infections using multi-
plex real-time PCR55,56. Mid-stream urine was also assessed for Sm circulating cathodic antigen (CCA) using a 
point-of-care test (Rapid Medical Diagnostics, Pretoria, South Africa). Schistosoma haematobium is not present in 
the surveyed areas57. Blood samples were processed to obtain plasma for immunological measurements, includ-
ing N-glycan-specific IgE and IgG by microarray (detailed below) and Schistosoma egg [SEA]- and adult worm 
[SWA] antigen-specific IgE, IgG4 and IgG by ELISA (Supplementary Material).

The research ethics committees of the Uganda Virus Research Institute and the London School of Hygiene 
and Tropical Medicine, and the Uganda National Council for Science and Technology approved this work. All 
methods were performed in accordance with guidelines and regulations of these committees. Informed consent 
was obtained from all participants and/or their legal guardians and assent from children aged ≥8 years.

Microarray detection of N-glycan-specific IgE and IgG.  Immunoglobulin E and G responses to 
135 chemically synthesised glycans with and without core α-1,3-fucosylation and, or, β-1,2-xylosylation 
(Supplementary Fig. S1) were assessed using a non-commercial microarray. Fluorescently-labeled bovine 
serum albumin (BSA) was included as an array printing control. Microarray construction procedures have 
been described in detail elsewhere48,58. The glycan antibody binding assay was adapted from existing proce-
dures17,46,49,59, as follows: Nexterion H N-hydroxysuccinimide-coated microarray slides (Schott AG, Mainz, 
Germany) (pre-blocked with 50 mM ethanolamine in 50 mM sodium borate buffer pH 9.0, and stored at −20 °C) 
were thawed at room temperature (RT) and covered with silicone gaskets to create seven wells with printed 
microarrays per slide. Each microarray was incubated with 300 μl of a 1:30 plasma dilution in 1% BSA - 0.01% 
Tween20 for one hour at RT while shaking. After sequential washes with PBS-0.05% Tween20 and PBS, the slides 
were incubated for 30 minutes at RT in the dark with PromoFluor 647-labelled anti-human IgE (diluted 1/150 in 
PBS-0.01% Tween20) and Cy3-labelled anti-human IgG (diluted 1/1000 in PBS-0.01% Tween20), while shaking. 
After a final wash with PBS-0.05% Tween20, PBS and deionised water, sequentially, the slides were dried and kept 
in the dark until scanning. The slides were scanned for fluorescence at a 10μm resolution with a G2565BA scanner 
(Agilent Technologies, CA, USA) using 633 nm and 532 nm lasers for detection of reactivity to glycan-specific IgE 
and IgG, respectively.

Data analysis.  Using GenePix Pro 7.0 software (Molecular Devices, CA, USA), a spot-finding algorithm was 
used to align and re-size fluorescence spots in the microarray images, without setting a composite pixel inten-
sity threshold. Data on median fluorescence intensity (MFI) for each spot and the local background were then 
exported to Microsoft Excel software, where background MFI subtraction was done for each glycan structure, 
averaged over four spots. Further processing of IgG and IgE MFIs in Excel was done as described by Oyelaran et 
al.60 and Amoah et al.46, respectively, to yield log2-transformed values.

Graphical representations of antibody responses and further data analyses were done using Stata 13.1 (College 
Station, Texas, USA), R (R foundation for Statistical Computing, Vienna, Austria) via the RStudio interface (ver-
sion 1.1.383, RStudio, Inc. Boston, USA) and GraphPad Prism (version 6.0e, Fay Avenue, La Jolla, CA, USA). 
Schistosoma mansoni infection and the rural-urban environment were the main exposures of interest: we com-
pared anti-glycan antibody responses between Sm infected and uninfected participants separately in the rural and 
urban survey, and thereafter between rural and urban participants. Initial analyses considered each anti-glycan 
antibody response independently, while further analyses combined antibody responses to reduce the dimension-
ality of the outcome data, as detailed below.

Rural-urban differences in Sm prevalence and Schistosoma-specific antibodies were assessed using survey 
design-based logistic and linear regression, respectively. Most log2-transformed anti-glycan IgE responses main-
tained a skewed distribution. Therefore, Mann-Whitney tests were used to assess differences in individual gly-
can structure-specific antibody responses between Sm infected and uninfected participants and between rural 
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and urban participants. Most log2-transformed anti-glycan IgG responses were normally distributed and were 
assessed using unpaired t tests. The Kruskal-Wallis (IgE responses) and one-way ANOVA test (IgG responses) 
were also conducted to assess differences along the infection intensity gradient. Since many of the anti-glycan 
antibody responses were correlated, the above tests were conducted within a Monte Carlo simulation approach 
based on 1000 permutations, to generate empirical p-values corrected for multiple testing.

Given the large number of outcomes, two data reduction techniques were used to investigate associations 
between exposures and outcomes. First, principal component analysis (PCA) was run in Stata to transform 
groups of correlated anti-glycan responses into fewer, uncorrelated artificial variables (principal components, 
PCs), which were then compared by 1) survey setting, and 2) Sm infection and intensity status using survey 
design-based linear regression. Second, unsupervised hierarchical clustering analysis (HCA, complete link-
age using Euclidean distance) was conducted in R to further identify homogeneous sets of N-glycan-specific 
responses. The resultant IgE and IgG clusters were then assessed for associations with survey setting and Sm 
infection using the global test61–63 executed in R with the Globaltest package (version 5.33.0).

Results
Characteristics of the rural and urban survey participants included in this analysis are presented in Table 1. Rural 
participants were, on average, older [median age (IQR) 22 (5, 37)] than urban participants [median age (IQR) 
11 (5, 18)] (p < 0.001). A significantly higher percentage of rural, compared to urban participants, were infected 
with Sm (KK, p = 0.002; PCR, p < 0.001; CCA, p = 0.015). Furthermore, median levels of total IgE (p < 0.001) and 
SEA- and SWA-specific IgE (p < 0.001), IgG4 (p = 0.001) and IgG (p = 0.002 and p < 0.001, respectively) were 
higher among rural compared to urban participants.

We recently reported that community-based intensive versus standard anthelminthic intervention in the 
rural survey reduced Sm infection intensity but had no effect on the overall Sm prevalence (measured using the 
urine CCA test)52. The current analysis found no evidence of an effect of intensive versus standard treatment on 
total IgE, SEA- or SWA-specific antibodies, or on antibody reactivity to any of the N-glycans on the microarray. 
Therefore, data from the rural survey were not stratified by trial treatment arm in the further analyses presented 
herein.

Associations between S. mansoni infection and IgE and IgG responses to individual core 
β-1,2-xylosylated and core α-1,3-fucosylated N-glycans.  In the rural survey, IgE and IgG responses 
to the β2Xyl modified Man3GlcNAc2 core (G34) were significantly higher among Sm infected (KK and/or PCR, 
and CCA positive), compared to uninfected individuals, and were positively associated with Sm infection 

Characteristic Rural (n = 209) Urban (n = 62) p value

Age in years, median (IQR) 22 (5, 37) 11 (5, 18) <0.001*

Male sex, n/N (%)§ 97/209 (44.3) 18/62 (29.0) 0.163¶

Helminth infections, n/N (%)§

S. mansoni (single KK) 54/197 (34.5) 4/48 (8.3) 0.002¶

S. mansoni intensity (KK)

0.002¶

   Uninfected (0 eggs/g) 143/197 (65.5) 44/48 (91.7)

   Light (0–99 eggs/g) 29/197 (17.2) 3/48 (6.3)

   Moderate (100–399 eggs/g) 14/197 (10.2) 1/48 (2.1)

   Heavy (≥400 egg/g) 11/197 (7.0) 0/48 (0.0)

S. mansoni (PCR) 77/196 (44.9) 6/48 (12.5) <0.001¶

S. mansoni (urine CCA) 118/199 (66.0) 21/58 (36.2) 0.015¶

Any nematode infection# 43/196 (18.7) 1/48 (2.1) 0.001¶

Total IgE (kU/L), median (IQR) 548.4 (404.4, 666.9) 103.3 (63.8, 146.5) <0.001*

Schistosoma egg and worm-specific antibody levels, (μg/ml), median (IQR)

SEA-specific IgE 4.2 (2.6, 6.6) 2.2 (1.4, 3.6) <0.001*

SWA-specific IgE 3.9 (2.4, 5.9) 2.1 (1.3, 3.1) <0.001*

SEA-specific IgG4 161.0 (45.9, 663.8) 8.8 (0.0, 48.4) 0.001*

SWA-specific IgG4 71.6 (39.5, 188.1) 32.1 (7.8, 57.9) 0.001*

SEA-specific IgG 1687.3 (848.1, 2727.7) 730.7 (527.4, 1413.4) 0.002*

SWA-specific IgG 1432.4 (845.8, 1941.6) 804.5 (572.7, 1311.3) <0.001*

Table 1.  Study participants: Schistosoma mansoni infection and Schistosoma-specific antibodies. §Percentages 
adjusted for survey design. ¶P values obtained from survey design-based logistic regression. *P values obtained 
from survey design-based linear regression. #Infection with any of Strongyloides stercoralis, Necator americanus 
(assessed by PCR), Trichuris trichiura, Ascaris lumbricoides (assessed by KK) and Mansonella perstans (assessed 
by modified Knott’s method). Percentages/medians that are significantly higher in one setting compared to the 
other (p ≤ 0.05) are highlighted in bold. KK: Kato-Katz; PCR: Polymerase Chain Reaction; CCA: Circulating 
Cathodic Antigen; IQR: Interquartile range; SEA: Schistosoma egg antigen; SWA: Schistosoma adult worm 
antigen.
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intensity (KK) [Fig. 2a–f] and SWA- and SEA-specific IgE and IgG (Supplementary Table S1). Observations were 
similar for the N-glycan core carrying both β2Xyl and α3Fuc (G37). However, IgE and IgG responses to the 
N-glycan core carrying α3Fuc only (G73) were similar between Sm infected and uninfected rural individuals 
(Fig. 2a–f), but positively associated with SWA- and SEA-specific IgE and IgG (Table S1).

In the urban survey, IgE and IgG reactivity to core β2Xyl and/or core α3Fuc modified glycans was also higher 
in Sm infected (KK and/or PCR) compared to uninfected individuals, although differences were not statistically 
significant (Fig. 2g–j). However, IgE reactivity to core α3Fuc and core α3Fuc + core β2Xyl modified glycans was 
significantly positively associated with SEA- and SWA-specific IgE (Table S1).

In the rural survey, Sm infection prevalence (and intensity) and median levels of Schistosoma-specific anti-
bodies (except SEA-IgE) and β-1,2-xylosylated glycan (G34)-specific IgE and IgG were highest among 10-14-year 
old individuals (Fig. 3). However, IgE and IgG reactivity to glycans carrying either core α3Fuc (G73) or both core 
β2Xyl and core α3Fuc (G37) peaked earlier (in the 5-9-year age group), akin to SEA-specific IgE. Age-stratified 
antibody reactivity patterns were less clear in the urban survey.

Immunoglobulin E and G responses to other N-glycan structural variants with core β2Xyl or both core β2Xyl 
and core α3Fuc48 were also higher in Sm infected versus uninfected individuals (Fig. S2). IgE and IgG reactivity to 
non-xylosylated and non-fucosylated glycans was not associated with Sm infection (data not shown), except for 
those glycans with antennae constructed of LDN-F (G90) and LeX (G89) units (Fig. S3).

Infection with other helminths, malaria or HIV was not associated with IgE or IgG reactivity to any glycans 
on the microarray (data not shown).

Principal component analysis of anti-glycan antibody responses.  Antibody responses to individual 
core modified N-glycans were strongly correlated. Principal component analysis (PCA) was conducted to sum-
marise these responses, and to evaluate to what extent the resultant principal components (PCs) were associated 
with Sm infection.

Scatterplots of PC1 and PC2 loadings are shown in Fig. 4. In the rural survey, the first two IgE and IgG PCs 
each accounted for 37% of the total variance in the data (IgE: PC1 28.2%, PC2 8.8%; IgG: PC1 27.7%, PC2 9.7%). 
Principal component 1 was characterized by responses to core β2Xyl and/or α3Fuc modified glycans while PC2 
was characterized by responses to non-xylosylated and non-fucosylated glycans (Fig. 4, panel a and b). Scores for 
IgE PC1, but not PC2, were higher among Sm infected (KK or PCR) compared to uninfected individuals (crude 

Figure 2.  Associations between S. mansoni infection and IgE and IgG reactivity to N-glycans carrying non-
mammalian core modifications. Plasma from S. mansoni infected and uninfected rural and urban individuals 
were assessed for IgE and IgG reactivity to N-glycan structural variants with and without α-1,3-fucosylation and 
β-1,2-xylosylation, on a microarray platform. Box-and-whisker plots show background-subtracted and log2-
transformed median fluorescence intensities (MFI) representing IgE (a–c,g,h) and IgG (d–f,i,j) reactivity to the 
Man3GlcNAc2 core structure (G42) and to α3Fuc- and/or β2Xyl-carrying Man3GlcNAc2 core structures (G34, G73 
and G37). The plots show a horizontal line denoting the median, a box indicating the interquartile range (IQR), 
and whiskers drawn using the Tukey method (1.5 times IQR). Outliers (greater than 1.5 times IQR away from the 
median) are plotted as individual points. Mann-Whitney (IgE responses) and unpaired t test (IgG responses) were 
conducted within the framework of a Monte Carlo simulation algorithm based on 1000 permutations (in order to 
adjust for multiple testing), to assess differences between infected and uninfected individuals. The Kruskal-Wallis 
(IgE responses) and one-way ANOVA test (IgG responses) were also conducted using the permutation approach 
to assess differences along the infection intensity gradient (b and e) in the rural survey. #Infection prevalence and 
intensity was relatively low in the urban survey so analysis by Sm intensity is not shown for the urban setting. 
*p < 0.05; **p < 0.01; ***p < 0.001. Sm: S. mansoni infection determined by detection of eggs in a single stool 
sample by Kato-Katz and/or PCR (rural infected n = 84, uninfected n = 113; urban infected n = 6, uninfected 
n = 42); CCA: S. mansoni infection determined by a positive urine circulating cathodic antigen (CCA) result (rural 
infected n = 118, uninfected n = 81; urban infected n = 21, uninfected n = 37).
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p = 0.028, age- and sex-adjusted p = 0.167). Similarly, IgG PC1 scores were higher among Sm infected (KK or 
PCR) compared to uninfected individuals (crude p = 0.009, adjusted p = 0.027). There were no differences in PC 
scores between CCA+ and CCA− individuals.

In the urban survey, the first two IgE and IgG PCs accounted for 31% and 35% of the total variance, respec-
tively (IgE: PC1 19.4%, PC2 11.5%; IgG: PC1 24.2%, PC2 10.6%). Interestingly, most IgE responses to glycans 
carrying core β2Xyl without α3Fuc clustered with non-xylosylated and non-fucosylated glycans in PC2 while 
responses to glycans carrying both core β2Xyl and α3Fuc and those carrying core α3Fuc without β2Xyl clustered 
together in PC1 (Fig. 4, panel c). Akin to the rural survey, scores for IgE and IgG PC1 were higher among Sm 
infected compared to uninfected urban individuals.

Scores for PC1 were positively associated with SWA- and SEA-specific IgE and IgG in both surveys, while PC2 
scores were inversely associated with the same Schistosoma-specific antibodies (Table S1).

In addition to PCA, we conducted HCA to further identify groups of anti-glycan IgE and IgG responses that 
might be jointly elicited in Sm infected versus uninfected individuals. Figure S4 shows clusters of IgE and IgG 
responses in the rural and urban survey, and the dominant core substitutions on the glycans in these clusters. 
Generally, antibody clusters comprising core β2Xyl modified glycans were positively associated with Sm infection 
and intensity in both surveys (Table S2).

Rural-urban comparisons of anti-glycan antibody responses.  Immunoglobulin E responses to indi-
vidual core β2Xyl and/or α3Fuc modified glycans were higher among rural compared to urban participants, as 
exemplified in Fig. 5a. Principal component analysis of data combined from both surveys yielded distinct groups 
of anti-glycan responses (Fig. 5b,f): PC1 was characterized by responses to core β2Xyl and/or α3Fuc modified 
glycans while PC2 was characterized by responses to non-xylosylated and non-fucosylated glycans. Scores for 
IgE PC1 (Fig. 5c), but not PC2 (Fig. 5d), were higher among rural compared to urban individuals (p = 0.002). 
Differences in IgG PC1 scores were not statistically significant. However, IgG PC2 scores were lower among rural 
compared to urban individuals (p = 0.013).

Further assessment by HCA showed that clusters that comprised IgE responses to core β2Xyl and/or α3Fuc 
modified glycans (IgE-C1, IgE-C2 and IgE-C4; Fig. S5) were positively associated with the rural setting (Table S4), 
while IgE-C3 (characterised by very low responses, raised against non-xylosylated and non-fucosylated glycans) 
was positively associated with the urban setting. Immunoglobulin G response clusters were generally sim-
ilar between rural and urban settings, except for IgG-C7 which comprised responses to non-xylosylated and 
non-fucosylated glycans and was positively associated with the urban setting.

Figure 3.  Age-stratified prevalence of S. mansoni infection and median IgE and IgG reactivity to SWA, SEA and 
α-1,3-fucosylated and β-1,2-xylosylated N-glycans. (a,e) Rural and urban prevalence and intensity of S. mansoni 
infection, by age group. (b,f) Median IgG, IgG4 and IgE reactivity to SWA and SEA, by age group, among rural 
and urban participants, respectively. (c,g) Median IgE reactivity to the Man3GlcNAc2 core and to α3Fuc- and/or 
β2Xyl modified Man3GlcNAc2 core structures, by age group, among rural and urban participants, respectively. 
Plotted results are from all participants, irrespective of Sm infection status. (d,h) Median IgG reactivity to the 
Man3GlcNAc2 core and to α3Fuc- and/or β2Xyl-modified Man3GlcNAc2 core structures, by age group, among 
rural and urban participants, respectively. Plotted results are from all participants, irrespective of Sm infection 
status. CCA: S. mansoni infection determined by a positive urine circulating cathodic antigen (CCA) result; KK: 
S. mansoni infection determined by detection of eggs in a single stool sample by Kato-Katz (KK); epg: Eggs per 
gram of stool; SWA: Schistosoma adult worm antigen; SEA: Schistosoma egg antigen.
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Discussion
By studying rural Sm-endemic Ugandan fishing communities and a proximate urban community, we have dis-
sected antibody responses to core β2Xyl and α3Fuc modified N-glycans. Antibody responses to the core modified 
glycans were higher in the rural communities compared to a proximate urban community. In the urban commu-
nity, IgE and IgG to both core β2Xyl and core α3Fuc were positively associated with Sm infection. In the rural 
communities, IgE and IgG to core β2Xyl were strongly positively associated with Sm infection while reactivity to 
core α3Fuc was elevated in both Sm infected and uninfected individuals. In the rural communities the concen-
tration of antibodies to core α3Fuc modified N-glycans peaked ahead of the peak of Sm infection intensity, while 
the peak of antibodies to N-glycans with only core β2Xyl coincided with it.

The positive association between current Sm infection and IgE and IgG reactivity to N-glycans carrying only 
core α3Fuc in the urban, but not the rural communities, might reflect universal exposure to infection, and per-
sistence of light infection despite treatment, in the rural setting. Core α3Fuc is abundant on N-glycans from Sm 
eggs but is not expressed by cercarial and adult worm N-glycans19,20,24. It is plausible that responses to core α3Fuc 
persist after active infection in high Sm exposure rural settings: in mice, eggs and hepatic granulomas persist 
long after clearance of worms64. Another explanation for elevated responses to α3Fuc in the rural communities, 
regardless of Sm infection status, is cross-reactivity. Core α-1,3-fucosylation and β-1,2-xylosylation are also pres-
ent on certain plant and insect glycoproteins29,30,65, hence similar core α3Fuc responses in both Sm infected and 
uninfected individuals may also be explained by an exposure other than schistosomes, more prevalent in the rural 
than the urban setting, that carries core α3Fuc. The observation that antibodies to core β2Xyl were significantly 
higher among Sm infected individuals in both urban and rural settings implies a dominant role for core β2Xyl 
(compared to core α3Fuc) in Sm-specific humoral immunity, shown here for the first time. It also appears that 

Figure 4.  Principal component analysis of anti-glycan antibody responses. Scatterplots of first (PC1) and 
second factor (PC2) loadings derived from principal component analysis of IgE and IgG responses to 135 
synthetic N-glycans. Box-and-whisker plots show comparison of PC1 and PC2 scores between S. mansoni 
infected and uninfected individuals. The plots show a horizontal line denoting the median, a box indicating the 
interquartile range (IQR), and whiskers drawn using the Tukey method (1.5 times IQR). Outliers (greater than 
1.5 times IQR away from the median) are plotted as individual points. Panels a and b show IgE and IgG profiles, 
respectively, among rural participants. Panels c and d show IgE and IgG profiles, respectively, among urban 
participants. Associations between factor loading scores and S. mansoni infection and intensity were assessed 
by linear regression analysis in Stata 13.1. Crude and age- and sex-adjusted p values are shown for significant 
associations. All analyses were adjusted for survey design using the ‘svy’ command in Stata. PC1: Principal 
Component 1; PC2: Principal Component 2; Sm: S. mansoni infection determined by detection of eggs in a 
single stool sample by Kato-Katz and/or PCR (rural infected n = 84, uninfected n = 113; urban infected n = 6, 
uninfected n = 42); CCA: S. mansoni infection determined by a positive urine circulating cathodic antigen 
(CCA) result (rural infected n = 118, uninfected n = 81; urban infected n = 21, uninfected n = 37).
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responses only to core β2Xyl are more responsive to change in Sm exposure: core β2Xyl is abundant on cercarial 
N-glycans despite being absent in adult worms.

The prominent contribution of core β2Xyl and α3Fuc to cross-reactivity between schistosomes and other envi-
ronmental exposures such as pollen, hymenoptera venom and vegetable foods22,37,38 is a caveat against the use of 
core modified glycans in schistosome diagnostic tests. Cross-reactivity with other helminth infections might also 
occur, but only a few other helminth species25–28, none of which are prevalent in humans in our survey settings, 
have so far been demonstrated to express glycans with core β2Xyl and α3Fuc motifs. More extensive glycomic 
studies of other helminths in our survey settings (S. stercoralis, hookworm, T. trichiura, A. lumbricoides, M. per-
stans) are warranted. However, we did not find any significant associations between these infections and IgE or 
IgG reactivity to core modified glycans.

Our observations that IgE and IgG reactivity to N-glycans modified with antennae carrying LDNF and LeX 
units were associated with Sm infection in both surveys are consistent with previous studies in animal models 
and in humans49,66. No associations were observed with responses to glycans carrying unsubstituted LDN units.

Principal component analysis indicated strong correlations between antibody responses to β-1,2-xylosylated 
glycans and responses to α-1,3-fucosylated glycans in both surveys. Core β2Xyl and α3Fuc epitopes can be found 
on similar Sm antigens, where they may be expressed on the same glycoproteins and glycans (such as those 
expressed by SEA)19, inducing analogous immune responses36. Non-xylosylated and non-fucosylated glycans 
with antennae constructed of LDN, LDN-F or LeX units may be expressed on the same Sm antigens as glycans 
with core β2Xyl and α3Fuc motifs. Furthermore, these terminal antennary substitutions can occur on the same 
glycans as core β2Xyl and α3Fuc19,39,43. However, PCA showed that responses to non-core-substituted glycans 
with LDN, LDN-F or LeX units did not cluster with core β2Xyl/α3Fuc substituted glycans. Temporal changes in 
expression of glycans on Sm antigens have been reported20,34; it is possible that these two groups of glycans are 
expressed at varying magnitudes during Sm antigen maturation. Positive associations between Sm infection and 

Figure 5.  Rural-urban comparisons of anti-glycan antibody responses. (a,e) Box-and-whisker plots showing 
background-subtracted and log2-transformed median fluorescence intensities (MFI) representing IgE and 
IgG reactivity to individual α3Fuc- and/or β2Xyl-carrying Man3GlcNAc2 core structures in rural versus 
urban participants. The plots show a horizontal line denoting the median, a box indicating the interquartile 
range (IQR), and whiskers drawn using the Tukey method (1.5 times IQR). Outliers (greater than 1.5 times 
IQR away from the median) are plotted as individual points. Mann-Whitney (IgE responses) and unpaired t 
test (IgG responses) were conducted within the framework of a Monte Carlo simulation algorithm based on 
1000 permutations, to assess differences between rural and urban individuals. (b,f) First and second principal 
component loadings of N-glycan-specific IgE and IgG responses among all participants, irrespective of survey 
setting. (c,d,g,h) Box-and-whisker plots showing comparison of PC1 and PC2 scores between rural and urban 
individuals. Associations between PC scores and survey setting were assessed by linear regression in Stata 13.1. 
Crude and age- and sex-adjusted p values are shown for significant associations. All analyses were adjusted for 
survey design using the ‘svy’ command in Stata. *p < 0.05; **p < 0.01; ***p < 0.001. PC1: Principal Component 
1; PC2: Principal Component 2.
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the first principal component (representing responses to core β2Xyl and α3Fuc) reflect the important role of these 
core substitutions in the glycan-dependent host response to Sm. To further evaluate their contribution to the host 
immune response to Sm, it will be important to compare their antibody reactivity with that of other highly anti-
genic terminal motifs absent from glycans on the array used in this study, such as multi-fucosylated LDN motifs59. 
It is important to note that while IgG is abundantly detected to many schistosome glycans, and is triggered by Sm 
infection, only to core β2Xyl and α3Fuc modified glycans is IgE abundantly detected46,47,67.

Notably in the urban survey, PCA showed that IgE responses to core β2Xyl modified glycans clustered with 
responses to non-xylosylated and non-fucosylated glycans (Fig. 4c), and IgG responses to core β2Xyl and α3Fuc 
separated out less distinctly (Fig. 4d) than in the rural survey. The observed β2Xyl clustering patterns may be 
attributed to the greater intensity of repeated exposure to schistosome cercariae (core β2Xyl) and sustained egg 
deposition (core β2Xyl and α3Fuc) among rural compared to urban participants. In other words, rural-urban 
differences in antibody responses to core modified glycans may be indicative of differences in the intensity of Sm 
infection and/or degree of exposure between the two settings. However, this study did not have sufficient power 
to assess statistical interactions between the rural and the urban setting. Rural-urban differences in antibody 
responses to core modified glycans may also be explained by exposures other than schistosomes (mentioned 
above), perhaps more prevalent in the rural than the urban setting; however, this is unlikely as we observed strong 
associations between Sm infection and reactivity to core modified N-glycans, particularly to those carrying core 
β2Xyl. It is also noteworthy that urban survey participants were significantly younger than rural participants; 
however, this disparity did not seem to influence the observed rural-urban differences in anti-glycan responses, 
as observed from test statistics before and after adjusting for age.

One of the key challenges in schistosomiasis vaccine development is the risk of allergic (IgE) sensitisation to 
candidate vaccine antigens68. Glycans are attractive vaccine candidates because they are generally considered to 
be benign as allergenic determinants69,70. There are a few known exceptions, such as the galactose-α-1,3-galactose 
(α-1,3-gal) epitope (found in non-primate mammalian proteins, and shown to elicit severe allergy)71, so assess-
ment for any associations between IgE to antigenic Sm glycans and allergy-related phenomena are important. The 
case for consideration of core modified Sm glycans as Schistosoma vaccine candidates will also need definite proof 
for an association between reactivity to core modified glycans and protection from Sm infection/re-infection. Our 
data suggests that a protective role, if any, is more plausible for core β2Xyl than core α3Fuc: in the rural survey, 
antibody responses to core α3Fuc (G73 and G37, Fig. 3c,d) peaked in childhood, prior to the Sm infection peak in 
early adolescence, while responses to core β2Xyl (G34) coincided with the Sm infection peak (preceding the more 
‘protected’ period in adulthood). However, concrete evidence is required from further population and mechanis-
tic studies exploring the role of Sm N-glycans in protective immunity. For example, it may be important to assess 
antibodies to these core modifications (and other antigenic terminal motifs) in re-infection study cohorts evalu-
ating the immunological characteristics of individuals who are Sm-resistant following anthelminthic treatment.

In conclusion, we provide an immuno-epidemiological description of IgE and IgG responses to N-glycans 
in rural and urban Uganda, highlighting the significance of core β2Xyl and core α3Fuc to the glycan-dependent 
host immune response during chronic schistosomiasis. Moreover, our data imply that IgE and IgG responses to 
core β2Xyl and α3Fuc modified N-glycans have distinctive relationships with Sm infection and intensity, which 
may reflect their different contributions towards protective immunity against Sm that need to be further explored 
using mechanistic animal and human studies.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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